Birdie Blog

Thinking will not overcome fear but action will.

Unsupervised Learning Permutations for TSP using Gumbel-Sinkhorn Operator

NIPS23 学习置换 + 不同分布的泛化 + 理论解释

Unsupervised Learning Permutations for TSP using Gumbel-Sinkhorn Operator 基于Gumbel-Sinkhorn算子的TSP无监督学习置换 来自康奈尔大学 (这篇文章和NIPS23 Unsupervised Learning for Solving the Travelling Salesman Problem是同一...

Unsupervised Learning for Solving the Travelling Salesman Problem

NIPS23 SAG(GNN) + 带有local search的树搜索

Unsupervised Learning for Solving the Travelling Salesman Problem 求解旅行商问题的无监督学习 来自康奈尔大学 摘要 我们提出了一种用于解决旅行商问题(TSP)的无监督学习框架UTSP。我们使用代理损失来训练图神经网络(GNN)。GNN输出一个热图,表示每条边成为最优路径一部分的概率。然后,我们应用局部搜索来生成基于热图...

Neural Combinatorial Optimization with Heavy Decoder-Toward Large Scale Generalization

NIPS23 重解码轻编码 + 迭代重构局部解改进

Neural Combinatorial Optimization with Heavy Decoder: Toward Large Scale Generalization 重解码器的神经组合优化:面向大规模泛化 来自南方科技大学和香港城市大学 开源:https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/L...

Let the Flows Tell Solving Graph Combinatorial Problems with GFlowNets

NIPS23 GFlowNets

NIPS23 Let the Flows Tell Solving Graph Combinatorial Problems with GFlowNets 用GFlowNets求解图组合优化问题 来自Mila实验室和Google DeepMind 开源:https://github.com/zdhNarsil/GFlowNet-CombOpt (没研究过相关内容,没看懂) 摘要 ...

双层规划问题

综述和一些应用

双层规划问题 \[\begin{aligned} \min_{(x,y)}\quad &f(x,y) \\ \mathrm{s.t.}\quad &g(x,y)\leqslant0\\ \quad &y\in S(x), \end{aligned}\] 其中 $S(x)$ 表示下层问题: \[\begin{aligned} \min_{y}\quad &a...

Learning to Search Feasible and Infeasible Regions of Routing Problems with Flexible Neural k-Opt

NIPS23 k-opt learn to imporve + mask优化不可行探索 + 双流解码器

Learning to Search Feasible and Infeasible Regions of Routing Problems with Flexible Neural k-Opt 用柔性神经k-Opt学习搜索路由问题的可行和不可行区域 开源:https://github.com/yining043/NeuOpt 摘要 在本文中,我们提出了神经k-Opt (NeuO...

DeepACO Neural-enhanced Ant Systems for Combinatorial Optimization

NIPS23 神经蚁群系统 构造+局部搜索 泛用的元启发式

DeepACO Neural-enhanced Ant Systems for Combinatorial Optimization DeepACO:用于组合优化的神经增强蚁群系统 代码:https://github.com/henry-yeh/DeepACO 摘要 蚁群优化算法是一种元启发式算法,已成功地应用于各种组合优化问题。传统上,针对特定问题定制蚁群算法需要知识驱动的启发...

Ensemble-based Deep Reinforcement Learning for Vehicle Routing Problems under Distribution Shift

NIPS23 集成学习提高泛化性

Ensemble-based Deep Reinforcement Learning for Vehicle Routing Problems under Distribution Shift 配送移位下基于集成的车辆路径问题深度强化学习 摘要 虽然在独立同分布情况下表现良好,但大多数现有的VRP神经方法在分布变化的情况下难以泛化。为了解决这个问题,我们提出了一种基于集成的vrp深...

Deep Reinforcement Learning for the Electric Vehicle Routing Problem With Time Windows

EVRPTW

Deep Reinforcement Learning for the Electric Vehicle Routing Problem With Time Windows 文章原文:https://ieeexplore.ieee.org/document/9520134 发表在2022 IEEE Transactions on Intelligent Transportation Sy...

Combinatorial Optimization with Policy Adaptation using Latent Space Search

NIPS23 潜在空间采样学习+推理时候搜索

NIPS23 Combinatorial Optimization with Policy Adaptation using Latent Space Search 基于潜在空间搜索的策略自适应组合优化 来自InstaDeep 代码和数据集: https://github.com/instadeepai/compass (我没读代码,理解的不是很透彻,没有附录感觉讲的也不是很清楚,需...